

AIRFIT - P Series

Index

Subject	Page
Index	1
Introduction	2
System Concept	2-3
Application Considerations	4-5
Product Presentation	6
Dimensions	7
Performance Data	8-9
Selection Example	10
Guide Specification	11

Changes w/o notice or obligation.

Introduction

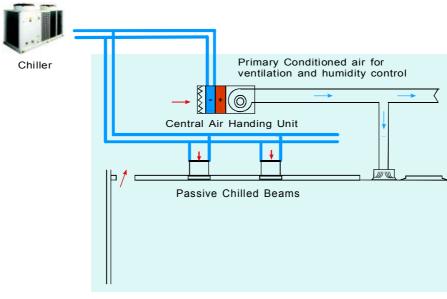

The Barcol-Air Airfit P passive chilled beam systems are designed to achieve effective cooling at the lowest energy cost. They operate using chilled water and are suitable for air-conditioning offices and many other applications where low operating costs are important. The system provides cooling, ventilation and humidity control with minimal noise and with almost no maintenance. Heating can also be made available with a separate perimeter heating system.

Figure 1: Barcol-Air Airfit P Passive Chilled Beam

System Concept

The principle of the passive chilled beam system is to use terminal chilled water heat exchangers in the ceiling to offset the room sensible cooling loads. The ventilation and humidity control requirements are taken care of using a separate primary conditioned air supplied by a central air handling unit.

2

Changes w/o notice or obligation.

System Concept

Cooling from the passive chilled beam is achieved by natural convection. The air surrounding the heat exchanger is cooled as it comes into contact with the heat exchanger and as its temperature reduces the density of the air increases resulting in a downward air flow pattern. This happens without the need for any external energy force to move the air resulting in large energy savings which are the main benefit of the system.

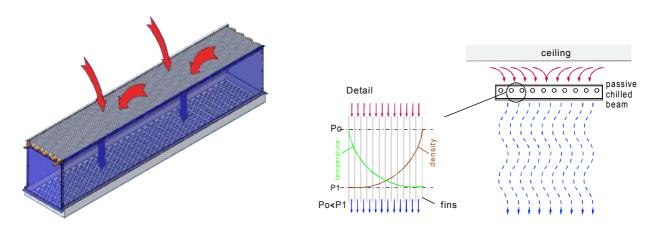


Figure 3: Passive Chilled Beam Natural Convection

Also as the separate primary air system is required only for ventilation and humidity control the amount of air can be reduced substantially verses conventional all air systems and often the primary air can be reduced to only that required for ventilation allowing the use of 100% fresh air without the need for air recirculation. This provides further energy savings as well as excellent indoor air quality.

The primary air systems is designed to maintain the room humidity level above the dew point temperature of the chilled beam so that the heat exchanger with operate without condensation. This avoids many of the maintenance and health concerns associated with other terminal heat exchanger systems such as fan coil systems that require condensate removal systems and are susceptible to algae growth and other forms of contamination as well as blocked drains and leaks.

To avoid the possibility of condensation on the passive chilled beams the primary air should be pretreated in a central air handling unit so that it can maintain the room dew point temperature at about 2 degrees C below the entering chilled water temperature, which is typically 16 deg C. In addition the building ventilation system should be controlled to maintain a small positive pressure in the building so that any air infiltration is out and not into the building. In this way even if a window is left open the air flow should be out of the building avoiding loss of control of the internal humidity level. For further protection condensation sensors can be installed on the entering chilled water piping for each operating area that will close the chilled water supply or reset the chilled water temperature to a higher level if it is sensed that the dew point of the surrounding room air is approaching the chilled water supply temperature of the chilled water piping.

Application Considerations

Air distribution in the room

Because the passive chilled beam operates using natural convection the cooled air flows downwards from the unit. As such is important to take care on where to locate the units in order to avoid down drafts above the occupants. Passive chilled beams are best sited above unoccupied areas and typically are installed adjacent to the perimeter walls or corridor walls.

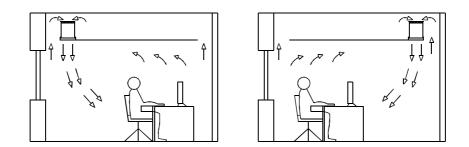
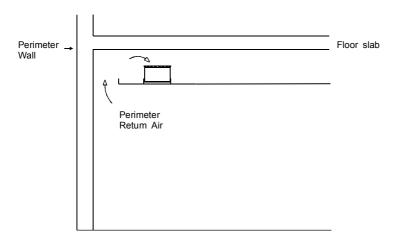
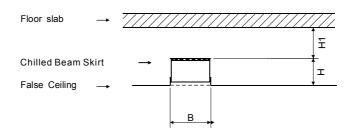



Figure 4: Positioning passive chilled beams

In colder climates it is recommended to have low level perimeter heating to offset down drafts at perimeter windows during the cold season.

Return Air

To provide an air path for the room air to return into the ceiling void and back to the chilled beam it is normal to leave a gap around the perimeter of the false ceiling. This avoids obstructions to the return air flow which can reduce the cooling capacity of the passive chilled beams.


Application Considerations

Chilled Beam Skirt

The performance of the passive chilled beam is enhanced by the provision of a skirt below the heat exchanger. This improves the natural convection of the air through the unit. Different skirt heights are available to match the requirements of cooling performance verses available ceiling void height.

Free space above the chilled beam

It is necessary to ensure adequate free space between the top of the chilled beam and the floor slab above to ensure good airflow into the unit. This is distance H1 in the diagram below.

Figure 6: Free space above the chilled beam

Where there is free air flow to both sides of the unit, H1 should not be less than 25% of the unit width B. If the chilled beam is located adjacent to a wall, within a distance of B or less, then H1 should not be less than 50% of B.

Free area below chilled beam

Barcol-Air passive chilled beams can be supplied with or without an air diffuser. Our standard products include a perforated diffuser with a free area designed to match the required unit performance. Other configurations including linear, metal mesh and egg crate diffusers can be supplied.

Product Presentation

Configuration Choices

Barcol-Air Airfit-P passive chilled beams are available in a variety of configurations to match the meet the specific needs of different projects:

- Unit heights of 100, 200 and 300mm including the chilled beam skirt to match different performance and available space needs.
- With or without outlet diffusers. Our standard is with a perforated diffuser but other diffusers are available including linear, metal mesh and egg crate configurations.

Different Sizes and Capacities

Our passive chilled beams are available in different widths – nominally 300mm and 600mm as standard to match with most ceiling systems. Different lengths are available in increments of 300mm from 1,200mm to 3,000mm or special lengths can be made available match particular project requirements.

Simple Mounting

The units are designed to be suspended from the ceiling slab and are supplied with support points for threaded rod or cable suspension.

Controls

The cooling capacity of the Airfit-P passive chilled beams is controlled using a chilled water control valve connected with a room thermostat. It is also recommended to install condensation sensors on the supply chilled water piping to each area to close the chilled water supply or increase its temperature if the surrounding air dew point temperature approaches the temperature of the chilled water inlet pipe.

Silent Operation

The air movement though the unit is by natural convection and therefore the operation of the units is completely silent.

Hygienic Operation

The cooling coil in the unit operates dry with supply and return water temperatures of about 16°C to 18°C. Therefore there is no need for condensate drain pans in the units and condensate drainage pipe work. This eliminates the health risks due to algae growth in drain pans and the smells and problems which can arise from stagnant condensate in drain pans and drain pipes.

Ventilation Humidity and Air Quality Control

Ventilation, humidity and air quality control is provided by the primary air which is supplied by a central air handling unit (AHU). The AHU ensures that the incoming air is dehumidified to control the room humidity for comfort conditions and to eliminate the possibility of any condensation on the chilled beam coils. The AHU should also include high efficiency air filters to control the room air quality and will normally use 100% fresh air eliminating air recirculation.

Low Maintenance

With the elimination of air fans and motors, air filters and condensate pans and drains there is almost no maintenance required for the chilled beams. Only the coil requires vacuum cleaning occasionally to remove dust, typically once per year.

6

Dimensions

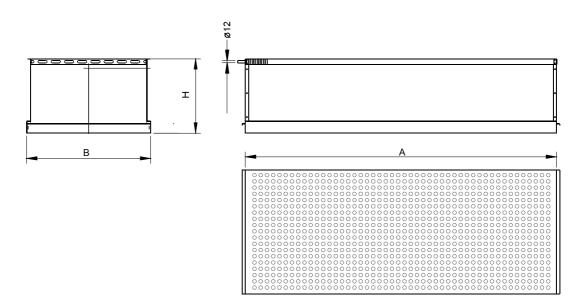
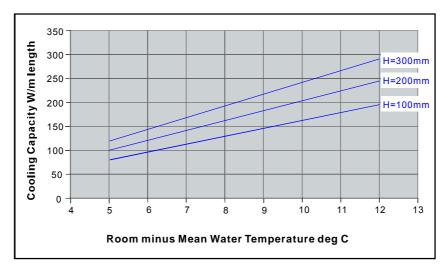


Figure 7: Airfit P Dimensions

Size	1200	1500	1800	2400	3000
A (mm)	1194	1494	1794	2394	2994
B (mm)	295 / 595	295 / 595	295 / 595	295 / 595	295 / 595
H (mm)	100 , 200 or 300mm				

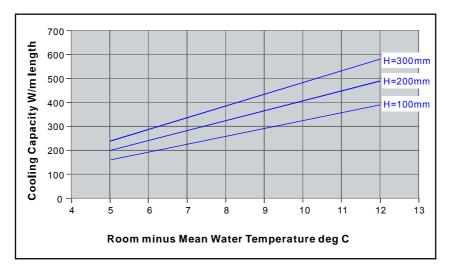
Table 1: Airfit P Dimensions

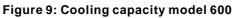

Changes w/o notice or obligation.

Performance Data

Cooling Capacities

The cooling capacities of passive chilled beams are rated on a W/m length basis and vary according to the difference between the room temperature and the mean of the entering and leaving chilled water temperatures as shown below in figure 8 and 9. Typically the chilled water supply temperature is 16 degrees C and the leaving water temperature 18 degrees C giving a mean temperature of 17 degrees C.


The cooling capacity also depends on the height of the unit and the chilled beam's skirt – dimension H. The capacities of the units are shown below in figure 8 and 9 based on water flows that give a 2 degrees C rise in the water temperature.



Cooling Capacity Model 300

Figure 8: Cooling capacity model 300

Cooling Capacity Model 600

Cooling Capacity Correction Factors

The cooling capacity is also affected by the following which need to be taken into account in determining the overall cooling capacity:

- The distance between the top of the unit and the floor slab above dimension H1. Where there is free air flow to both sides of the unit H1 should not be less than 25% of the unit width B. If the chilled beam is located adjacent to a wall within a distance of B or less then H1 should not be less than 50% of B.
- The free area of any diffuser or screen below the heat exchanger. The cooling capacity ratings above in figure 8 and 9 are based on 50%. Capacity correction factors are detailed below below.

Free Area	Correction Factor
30%	0.78
40%	0.88
50%	1.00
100%	1.06

Table 2: Diffuser free area capacity correction factors

Chilled Water Flow Rate

The required chilled water flow rate can be determined from figure 10 below using the selected cooling capacity and the required water temperature rise \triangle Tw.

Figure 10: Chilled water temperature rise

Changes w/o notice or obligation.

9

Selection Example

Specified data

Office (LxWxH)
Ceiling
Occupants
Minimum ventilation
Indoor design condition
Chilled water supply temperature
Sensible cooling load

5.4 x 3.6 x 2.7m Metal panel 600mm x 1,800mm grid 2 Persons 2 x 30m³/h 25 deg C db with 50% RH (Dew point 14 deg C) 16 deg C (Room dew point 14 deg C plus 2 deg C) 1,200W

Calculation

The temperatures required to select the passive chilled beams are:

```
T Room = 25 deg C
T Mean water = (16 + 18) divided by 2 = 17 deg C assuming a 2 deg water temperature rise.
```

So T Room minus T Mean water = 8 deg C

Selection

From Figure 9 select model 600 with H=300mm with a cooling capacity of 395 W/m which will provide total sensible cooling of 1,185W with 3 meter length of chilled beam

Select either: One Airfit P Model 600-300 with length 3000mm or two Airfit P Model 600-300 with length 1500 mm

To avoid down drafts over the room occupants the units should be installed parallel and adjacent to the perimeter wall or adjacent to the corridor wall.

From Figure 10 determine the required chilled water flow to be 510 l/h with a 2 deg C temperature rise.

Guide Specification

Example

Airfit-P passive chilled beams shall be used to compensate for the external and internal heat loads of the building and shall maintain the thermal comfort of the room within the required comfort parameters.

System Description

The system shall comprise: Barcol-Air P passive chilled beams installed in the ceiling to provide the cooling required to offset the sensible cooling loads of the occupied area. The passive chilled beams will be supplied with chilled water at 16 degrees C and the chilled beams shall be selected with a 2 degree water temperature rise.

The ventilation and humidity requirements of the occupied space shall be taken care of using a separate primary air system using 100% fresh air conditioned by a central air handling unit. The central air handling unit shall supply primary air at an humidity level to ensure the room dew point is maintained at least 2 degrees C below the temperature of the chilled water supplied to the passive chilled beams, i.e. 14 degrees C.

Construction and Performance

- Each passive chilled beam shall comprise a chilled water heat exchanger, chilled beam skirt to enhance the heat transfer and a discharge diffuser. The beams shall be nominally 600mm wide to match the projects ceiling grid and shall have an overall length of 1,800 mm.
- The heat exchanger shall be constructed from seamless copper tube with aluminum fins with a fin spacing of 8mm. Each heat exchanger shall be suitable for operation with a water pressure of 5bar and shall be factory leak tested at 20bar pressure.
- The body and skirt of the passive chilled beams shall be manufactured from electro galvanized steel with a thickness of at least 0.8mm.
- The discharge diffuser shall be perforated and have a free area of at least 50%. The diffuser shall be manufactured from electro galvanized steel at least 0.8mm thick and shall be finished with polyester powder paint to RAL9010 colour with 30% gloss.
- The passive chilled beam assembly shall be suitable for suspension from the floor slab above the ceiling using threaded rod or a steel wire hanging system.
- The passive chilled beams shall be rated in accordance with standard EN14518.

